OHM'S LAW

The rate of the flow of the current is equal to electromotive force divided by resistance.

- I = Intensity of Current = Amperes
- E = Electromotive Force = Volts
- R = Resistance = Ohms
- P = Power = Watts

The three basic Ohm's law formulas are:

$$I = \frac{E}{R}$$
 $R = \frac{E}{I}$ $E = I \times R$

Below is a chart containing the formulas related to Ohm's law. To use the chart, from the center circle, select the value you need to find, I (Amps), R (Ohms), E (Volts) or P (Watts). Then select the formula containing the values you know from the corresponding chart quadrant.

Example:

An electric appliance is rated at 1200 Watts, and is connected to 120 Volts. How much current will it draw?

Amperes =
$$\frac{\text{Watts}}{\text{Volts}}$$
 I = $\frac{P}{E}$ I = $\frac{1200}{120}$ = 10 A

What is the Resistance of the same appliance?

Ohms =
$$\frac{\text{Volts}}{\text{Amperes}}$$
 $\mathbf{R} = \frac{\mathbf{E}}{\mathbf{I}}$ $\mathbf{R} = \frac{120}{10} = 12 \Omega$

OHM'S LAW

In the preceding example, we know the following values:

- I = amps = 10 R = ohms = 12 Ω
- E = volts = 120 P = watts = 1200

We can now see how the twelve formulas in the Ohm's Law chart can be applied.

$AMPS = \sqrt{\frac{WATTS}{OHMS}}$	$I = \sqrt{\frac{P}{R}} = \sqrt{\frac{1200}{12}} = \sqrt{100} = 10A$
$AMPS = \frac{WATTS}{VOLTS}$	$I = \frac{P}{E} = \frac{1200}{120} = 10A$
AMPS = <u>volts</u> ohms	$I = \frac{E}{R} = \frac{120}{12} = 10A$
WATTS = <u>Volts</u> ² <u>ohms</u>	$\mathbf{P} = \frac{\mathbf{E}^2}{\mathbf{R}} = \frac{120^2}{12} = \frac{14,400}{12} = 1200W$
WATTS = VOLTS x AMPS	P = E x I = 120 x 10 = 1200W
WATTS = $AMPS^2 \times OHMS$	P = $I^2 x R = 100 x 12 = 1200W$
VOLTS = $\sqrt{WATTS \times OHMS}$	E = $\sqrt{\mathbf{P} \times \mathbf{R}} = \sqrt{1200 \times 12} = \sqrt{14,400} = 120V$
VOLTS = AMPS x OHMS	$\mathbf{E} = \mathbf{I} \mathbf{x} \mathbf{R} = 10 \times 12 = 120 \mathbf{V}$
$VOLTS = \frac{WATTS}{AMPS}$	$E = \frac{P}{I} = \frac{1200}{10} = 120V$
OHMS = <u>Volts²</u> Watts	$\mathbf{R} = \frac{\mathbf{E}^2}{\mathbf{P}} = \frac{120^2}{1,200} = \frac{14,400}{1,200} = 12\Omega$
$OHMS = \frac{WATTS}{AMPS^2}$	$\mathbf{R} = \frac{\mathbf{P}}{\mathbf{I}^2} = \frac{1200}{100} = 12\Omega$
OHMS = <u>Volts</u> <u>AMPS</u>	$\mathbf{R} = \frac{\mathbf{E}}{\mathbf{I}} = \frac{120}{10} = 12\Omega$